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SOME MODULAR IDENTITIES OF RAMANUJAN
USEFUL IN APPROXIMATING w

JON BORWEIN1

ABSTRACT. We show how various modular identities due to Ramanujan may

be used to produce simple high order approximations to n. Various special-

izations are considered and the Gaussian arithmetic geometric mean formula

for 7r is rederived as a consequence.

1. In the second part of Ramanujan's 1914 paper Modular equations and ap-

proximations to n [9], the author lists some remarkable modular identities which

he uses to give algebraic approximations to it (such as

63 /17 + 15^

25 \ 7 + 15v/5 )

which gives it to 11 digits). While considerable attention has been paid to the

prodigious singular value calculations which comprise the first half of the paper

([8, 12] and references therein), less attention seems to have been given to the

subtle identities given in Table III of [9]. In this note we show how these identities

lead to explicit nth order approximations to n.

We begin by sketching the genesis of the approximation and then give explicit

specializations for various integers. We finish by rederiving the Gaussian arithmetic

geometric mean (AGM) identity for it which forms the basis for the recent high

precision calculation of tx (16 million decimal digits) by Tamura and Kanada ([11]

and private communications). For more information on the AGM the reader is

referred to [3].

2. We take for granted the basic identities of elliptic and theta function theory

as available in Whittaker and Watson [13], Cayley [7] and Bellman [1]. A more

explicit treatment will be forthcoming in [5].

Ramanujan proceeds as follows. Let n be a positive integer and let $n(k,l)

denote the nth order modular equation which is algebraic in k, I and polynomial

in u := k1/4, v := l1/4. Suppose that $„(fc,/) = 0 with 0 < I < k and let

K := K(k), L := K(l) denote the (complete) elliptic integrals (of the first kind)

with moduli k and /, respectively. As usual let k' := \/l — k2 denote the conjugate

modulus and K' := K'(k) := K(k'). Then

K'      L'
(1) (i)    n— - —    and    (ii)    L = mnK
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where mn :— mn(k,l) is the associated multiplier which is also algebraic in k and

/. Indeed Jacobi's differential equation

dk      kk'2 (K\2      kk'2    _2
(2) ndi=7^Uj  =«^m"

shows immediately the algebraic nature of mn, given that for $„. In terms of the

nome q one has

(3) q--e-*K'/K    and    qn = e-nL'/L

and the standard product relationship

(4) Ql/l2nz^-i2k) _(kk<y\[K

9n/i2nr=i(i-92fc")   \ii'J   vl

Logarithmic differentiation of (4) combined with application of (2) and qdk/dq

2kkl2K2/-n2 produce

(5) nP(qn)-P(q) = (4KL/7T2)Rn(k,l),

where

P(9):=l-24X^
q2"

and Rn is an algebraic function of k and /. The algebraic nature of Rn follows

from (2). Using calculations similar to those in §5 of [4] one can give a reasonably

simple general formula for Rn. No details are given by Ramanujan who, how-

ever, then lists elegant specializations of Rn for various different n. (Specifically

2,3,5,7,11,15,17,19,23,31,35. The equation given of degree 4 appears flawed.)

Thus one has the following tables in which Rn is taken from Table III of [9], and

the modular information is available for the most part in [7 or 5]. Indeed Cayley

gives $„(u,v) for all odd n up to 20, and mn(u,v) is then computable from (2).

As before u := /c1/4, v := I1/4.

(A) Modular equations

$2(k,l) = (l + k')l-(l-k')=0,

<ï>3(k,l) = (kl)1/2 + (k'l')1/2-l = 0    or

$3(u,v) = u4 - v4 + 2(uvf - 2uv = 0,

$s(M) = (k1/2 - l1/2)3 - 4(kl)1/4(k'l') = 0    or

$s(u,v) = u6 - v6 + 5u2v2(u2 - v2) - 4m;(1 - u4v4) = 0,

$7(k,l) = (kl)l/4 + (k'l')1/4-l = 0    or

$7(u,v) = (I - u8)(l - v8) - (1 - uvf = 0,

$23(fc, i) = (kl)l'4 + (k'V)l'4 + 22^(klk'V) l'2-l = 0.
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(B) Multipliers

,,n   1 + tf     1
m2(k,l) =

m3(u,t>) =

2 1 + /'

w 2u3

u + 2v3 3v

m5(u,v) =
v + u5 u — vu4

m-j{u,v)

5(v + uv4)       u — v5 '

u(l — uv)(l — uv + (uv)2) _ u7 - v

u — v7 7l>(1 — uv)(l — uv + (uv)2)

\1/2   fi'V'2   iii'V'2   .fii'\1/3       is
««(*. 0 = U +     T7 -     ÏÛ "4

vfc/ Vfc7 Vfcfc7 Vfcfc7 mi3(/,/c)

(C) Ramanujan identities

R2(k,l) = k' + l,

R3(k,l) = l + kl + k'l',

R5(k,l) = (3 + kl + k'l')\l1 + kl2+k'1',

R7{k,l) = 3(l + kl + kff),

R15(k,l) = [1 + (fc/)1/4 + (k'l')1'4]4 - (1 + kl + k'l'),

R19(k,l) = 6[(1 + W + A//') + (kl)1'2 + (k'l')1'2 - (kk'll1)1'2],

R23(k,l) = 11(1+ kl +k'l')

- 16(4fcrV//')1/6(l + (kl)1'2 + (k'l')1'2) - 20(4kkfll')1/3,

R35(k,l) = 2{(kiy/2 + (k'l')1/2 - (kkfll')1'2]

+ 4(fcfc'//')-1/6[l - (kl)1'2 - (k'l')1'2]3.

Moreover, if one substitutes q := e~n'%^1 in (4) before differentiating logarith-

mically one derives

(6) nP(e-7r^L) + P(e-n/^ñ) = ùy/H/ir,

and setting n = 1 shows

(7) P(e-*)=3/n.

The interested reader is directed to [2] for much recent information on identities

like (6).
We now diverge from Ramanujan whose purpose was to provide explicit alge-

braic approximations to n, while we are concerned with reduced complexity iter-

ative approximations for it. Let fco :_= l/\/2 and iteratively solve $„(/c¿,fc¿+i) for

ki+i, 1 < i < oo. If we set K{ := K(ki) we have

(8) n»+1p(e-™N+1)-S=f2ni¥^Rn(ki,ki+1),
¿=o

as follows on summing (5) and using (7). Moreover,

0< l-P(e-™N) <25e~2™N,
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and asymptotically one can replace "25" by "24". Thus,

N

(9)     0<

Since

,N+ l-£< AKtKl+l
Rn(k,k+i)

¿=o

-<100njV+1e-2'r""+I.

N
,N+ l = l + („-l)£,

»=0

this yields

/ CO

(10) 7T = 3 (l-jj

¿=0

—' 21+1 Rn(ki,kl+1) - (n-1)

in which the convergence is nth order. We now observe that An. = K(l/y/2) =

7r/[2M(l, l/\/2)] where M(1,l/\/2) =: M0 is the Gaussian arithmetic geometric

mean of 1 and l/\/2 [3]. Then if we set a¿ := (2jFí¿/7t)Mo we have

:id ' = 3 i-E n

¿=o

^^An(fc¿,fc¿+1)-(n-l)

where fc0 := l/\/2, «o := L

(i) <&n(ki, ki+i) = 0, ki+1 G (0, fc¿),

(ii) a¿+i := mn(fc¿, fc¿+i)a¿, and

(iii) M0 = lim^oo a¿.

Here (ii) is a consequence of (l)(ü), and (iii) follows since lim^oo-K^ = K(0) —

tt/2. Thus (11) and (12) give algebraic series whose sum is it and whose convergence

is order n. While (11) leads to more elegant formulae for 7r, we may also write

N

(12) 0<7T-3     1-^ n

\ i=0

< 100nN+1e-2™N+1.

2 +1 Rn(ki,ki+1) -(n-1)
aN+i

since 0 < a^+i — Mo <4e In      . This shows that one can compute it from one

sequence of moduli.

Various adaptations of (12) are possible in which one replaces fco := l/\/2 by

other singular values. Indeed, (5) and (6) combine to give

(13) JnP(e-^) = 3 + 2J^hARn(kn-k'n

where kn solves K'(kn) — y/h~K(kn). This is also the genesis of Ramanujan's ex-

plicit approximations. For n > 1, however, the formulae become more complicated,

and involve M(l,fcn).
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3.   We now combine the information tabulated in §2 with (11) and (12) to

produce the following approximations.

Quadratic. Using the AGM form of $2 (as in [4]) leads to

(14)       Let (i) o0 := 1, 60 := 1/A

(ii) on+i := (an + 6„)/2, 6n+1 := \/anbn.

Then Mo = lim,,-^ a„ and

(iii)

* = 3 ii - f; 2n |Y-
n=0

'"n + ftn  I

2M02

Cubic. Using the u, v form of $3 leads to

(15) Let (i) do := 1, vQ:=2-l'\

(ii) an+i := anvn/(vn + 2v*+l) where $3(»n, Vi) = 0 and

0< vn+i <vn.

Then Mo = limn_00 o„ and

(iii)

it = 3 (l - 2¿ 3» [^^(1 + (tV^+i)4 - K^n+i)2) - l])

Quartic. Combining two steps of the quadratic iteration yields

(16) Let (i) 10 := 1, î/o := 2-1/4,

(ii) xn+i := (xn + yn)/2 and yn+1 := ((xnyn + ynxD/2)1/4.

Then Mq = limn-n» i2, and

(iii)
-1

tt = 3   1-3^4"
n=0

(rt + yl
V   2M0

Septic. Using the u, v form of $7 leads to

(17)       Let (i) ao := 1, *b := 2'^,

(ii) a„+i := a„vn(l - vnvn+i)(l - vnvn+i + (vnvn+1)2)/(vn - v7n+1)

where $7(t;n,i;n+i) = 0 and 0 < vn+i < vn.

Then Mq := limn-,,» o„ and

(iii)

= 3(l-3¿;
V n=0

OnOn+l

M2
(1 + (vnvn+1)4 + (1 - u„î;„+i)4) - 2

-1

The interested reader will be able to produce similar approximations based on

5, 15, 35 and slightly less explicitly on 23 or other integers. In each case the error

is given by (13). For example, the septic algorithm ((17) with ajv+i replacing Mo

and N replacing 00) gives 16, 130, and 932 digits of -k when run with N = 3.
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The estimate given in (12) predicts 15, 129, and 931 digits respectively. Using

N = 9, (17) will produce 7 • 7 x 108 digits of n. For discussion of the computational

complexity of such iterations the reader is referred to [3 or 6].

4. We now show that, at least, in the quadratic and cubic cases, one can cleanly

remove the M§ in (11). This results in a rederivation of the Gaussian identity for

it. The argument relies on the following Proposition:

PROPOSITION.   If M0,an,bn are given by (14) then

(18) \ + ¿ 2"(262 - a2n) = 2N+1M2 + 0(e~^).
71 = 0

Proof. Let

Ti = 0

Then in theta function terms [5, 7],

A A

2e\(q)-e4(q) = S(q),

and, with q :— e_7r,

>2 = M2e4 (f) ;     b2n = M2e4 (r) ■

Then

r OL2        _2 H JV      oo    om/0      ,   1y-2m(2n+l)
Eon     ¿bn - an     _ 0N+1 _ ,  _ 94 V^  V^ (2n + l)q

M2 ~ ¿q2^2^ 1+ö2»(2n+l)

°°      °°    om/o„   ,   117=2m(2n+l)

=*<» -1 - 24 E E (r+it^) + °^]

-2^1-[l + 2At^y0(q-2N).

But

1+24Err^ = ̂ w+ö34(9).
n=o-+^

Thus as 6i(q) + 6$(q) = ïOÎ;(q) = 3/(2M¿) we have established ( 18).    D

If we combine the information in (14) and in (18) we deduce that for large N

i "     /„»-um
ï-^'-E'-Ow)  (trom(14)>

1 N Í n2   - h2 \

~m-^(^f)     (fro, (18)).

Thus

(19) 7T =
2M02

1 - Yln=02n(an ~bn)
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which is the Gaussian identity for 7r rediscovered independently by Brent and

Salamin in the 1970s and suggested as a complexity reducing basis for computation

ofTT [6, 10].

One can also establish that

(20) 2M°2
1 -^^O^^n+lK^+l)2'

where an and vn are generated by (15). This can be done from a proposition

analogous to the above, but is more easily seen from remanipulation of the cubic

iteration given in [4].
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