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SOME MODULAR IDENTITIES OF RAMANUJAN
USEFUL IN APPROXIMATING 7

JON BORWEIN!

ABSTRACT. We show how various modular identities due to Ramanujan may
be used to produce simple high order approximations to 7. Various special-
izations are considered and the Gaussian arithmetic geometric mean formula
for 7 is rederived as a consequence.

1. In the second part of Ramanujan’s 1914 paper Modular equations and ap-
prozimations to 7 [9], the author lists some remarkable modular identities which
he uses to give algebraic approximations to m (such as

63 (17+15v5
25\ 7+15V5

which gives m to 11 digits). While considerable attention has been paid to the
prodigious singular value calculations which comprise the first half of the paper
([8, 12] and references therein), less attention seems to have been given to the
subtle identities given in Table III of [9]. In this note we show how these identities
lead to explicit nth order approximations to .

We begin by sketching the genesis of the approximation and then give explicit
specializations for various integers. We finish by rederiving the Gaussian arithmetic
geometric mean (AGM) identity for 7 which forms the basis for the recent high
precision calculation of w (16 million decimal digits) by Tamura and Kanada ([11]
and private communications). For more information on the AGM the reader is
referred to [3].

2. We take for granted the basic identities of elliptic and theta function theory
as available in Whittaker and Watson [13], Cayley [7] and Bellman [1]. A more
explicit treatment will be forthcoming in [5].

Ramanujan proceeds as follows. Let n be a positive integer and let ®,(k,!)
denote the nth order modular equation which is algebraic in k,! and polynomial
in u:= k4 v := /% Suppose that ®,(k,l) = 0 with 0 < [ < k and let
K := K(k), L := K(l) denote the (complete) elliptic integrals (of the first kind)
with moduli k and I, respectively. As usual let k' := /1 — k2 denote the conjugate
modulus and K' := K'(k) := K(k’). Then

/ /
(1) () ol =X and @) L=mK
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366 JON BORWEIN

where m,, := m, (k,l) is the associated multiplier which is also algebraic in k and
{. Indeed Jacobi’s differential equation

dk  kk (K\® kk? _,
_ll_I2mn

(2) "=\

shows immediately the algebraic nature of m,, given that for ®,. In terms of the
nome q one has

(3) q:=e "TK/K and ¢ = "H/L
and the standard product relationship

ql/12 Hzozl(l_qZk) B k_k' 1/6 {(_
g/ I (1 —gn) — \ W

T
Logarithmic differentiation of (4) combined with application of (2) and ¢dk/dq =
2kk’? K? /7% produce

(4)

(5) nP(q") — P(q) = (4KL/n*)Rn(k, 1),

where

m

o0 mq2
Plg):=1-24) =
m=1

and R, is an algebraic function of k and [. The algebraic nature of R,, follows
from (2). Using calculations similar to those in §5 of [4] one can give a reasonably
simple general formula for R,. No details are given by Ramanujan who, how-
ever, then lists elegant specializations of R,, for various different n. (Specifically
2,3,5,7,11,15,17,19, 23, 31, 35. The equation given of degree 4 appears flawed.)

Thus one has the following tables in which R, is taken from Table III of [9], and
the modular information is available for the most part in [7 or 5]. Indeed Cayley
gives @, (u,v) for all odd n up to 20, and m, (u,v) is then computable from (2).
As before u := kl/4, v :=[1/4,

(A) Modular equations

®o(k,l)=(1+K)—(1-FK)=0,
®3(k,l) = (K)Y2+ (K'V)/2-1=0 or
®3(u,v) = ut —v* +2(w)?® - 2uv =0,
®s(k, 1) = (k2 = 1/2)3 _ 4(k)Y4(K'1') =0 or
D5 (u,v) = u® — 0 + 5u?v? (u? — v?) — duv(1 — u*o?) =0,
®7(k, 1) = (K)Y4+ (K'1NY4-1=0 or
®7(u,v) = (1 —u®)(1 - 0®) — (1 —w)® =0,
®os(k,l) = (KI)Y4 + (K'Y + 22/3(klk'1) /2 — 1 = 0.
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(B) Multipliers

1+ K 1
mz(k,l)z'T =_l,
o u 2u® —v
m3(u,v) = u+203 3v
s (,0) = v+u® u—out
SO T Bururd) T uw—v8’
_u(l—w)(l—wv+ (w)?) u’ v
mz (u,v) = w— 7 T Tv(1 - w)(1 — w + (w)?)’

1\ 12 r\ 12 TARL: o\ V3 13
mat = (1) (8) () () ~mmew
(C) Ramanujan tdentities

Ro(k,0) = k' +1,
Ry(k,))=1+kl+ K,

1]
Rs (k.1 (3+1cz+k/z')\/1i'°’+“,

) =
Ry(k, ) =31+ kl+ K1),
Ris(k,1) = [1+ (k)4 + (K1) Y4* — (1 + Kkl + K'T"),
Rig(k, 1) = 6[(1+ kl + K'U) + (KI)Y/? + (K U')Y/2 — (kK 1W')}/2),
Roz(k,1) = 11(1 + kl + k'l")

— 16(4kK 1)1/5 (1 + (KI)/2 + (K 1')M/2) — 20(4kK 11)/2,
Ras (k. 1) = 2{(kI)/2 + (K)"/% — (kKII')'/?)
+4(kk'll') 1/6[1 kl 1/2 ( 'l')1/2]3.

Moreover, if one substitutes g := e~™/V™ in (4) before differentiating logarith-
mically one derives

(6) nP(e~™") + P(e~™V") = 6y/n/,

and setting n = 1 shows

(7 P(e™™) =3/x.

The (in)terested reader is directed to [2] for much recent information on identities
like (6).

We now diverge from Ramanujan whose purpose was to provide explicit alge-
braic approximations to w, while we are concerned with reduced complexity iter-
ative approximations for . Let ko := 1/v/2 and iteratively solve ®,,(k;, k;11) for
kit1, 1 <1< o0. If we set K, := K(k;) we have

N
N+1 —anN+1 _ § _ i4KiKi+l ) }
(8) n P(e ) T - ;_On 7l'2 R’L(k17kz+l)a

as follows on summing (5) and using (7). Moreover,

0<1-P(e™" )< 25e 2"
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and asymptotically one can replace “25” by “24”. Thus,

N
ORE [n”“ LA kz+1)] =3 < oot
i=0
Since
N .
nVtl =1+ (n- I)Zn’
=0

this yields

0o -1
(10) w:3<1—2n" [i"gf—ﬁ”—‘Rn(ki,km)—(n—l)])

in which the convergence is nth order. We now observe that Ko = K(1/v2) =
7/[2M(1,1//2)] where M(1,1/+/2) =: M is the Gaussian arithmetic geometric
mean of 1 and 1/+/2 [3]. Then if we set a; := (2K;/m) M, we have

- -1
(11) 7r=3<1—z {a’la’H—an(kz kiy1) — (n—l)])

1=0

where kg := 1/v2, ag:= 1,

(i) @n(ks, kit1) =0, kit1 € (0, k),

(ii) Q41 1= mn(ki, ki+1)a,~, and

(i) Mo = lim;_o0 as.

Here (ii) is a consequence of (1)(ii), and (iii) follows since lim;_,oc K; = K(0) =
7/2. Thus (11) and (12) give algebraic series whose sum is 7 and whose convergence
is order n. While (11) leads to more elegant formulae for m, we may also write

N -
(12) 09_3<1-Z [a’a’“b’m(kz kiv1) = (—I)J)

=0 N+1
o N+1
S IOOnN+le 2mn

k)

since 0 < any1 — Mp < 4e~™" %' This shows that one can compute 7 from one
sequence of moduli.

Various adaptations of (12) are possible in which one replaces ko := 1/v/2 by
other singular values. Indeed, (5) and (6) combine to give

(13) Vap(e V) = 2y )

Rn(kmk )
where k,, solves K'(ky,) = v/nK (k). This is also the genesis of Ramanujan’s ex-

plicit approximations. For n > 1, however, the formulae become more complicated,
and involve M(1,k,).
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3. We now combine the information tabulated in §2 with (11) and (12) to
produce the following approximations.
Quadratic. Using the AGM form of ®; (as in [4]) leads to

(14) Let (l) ag:=1, by := l/\/i,
(i) an+1 := (@n +b0)/2, bny1:= Varbn.
Then My = lim,,_, o an and

(i)
s(e-Er (5 )

n=0

Cubic. Using the u,v form of ®3 leads to
(15)  Let (i) ap := 1, v := 271/8,
(ii) an+1 := anvn/(vn + 21)2_“) where ®3(vn,vn+1) = 0 and
0< Upny1 < Up.
Then My = lim,,_, o @, and

(i)
o) -1
1r=3(1-2'§)3” [a—"%'gi'l(l+(vnvn+1)4—(vnvn+1)2)—1:‘> .

Quartic. Combining two steps of the quadratic iteration yields

(16)  Let (i) zo:=1, yo := 2"1/4,

(i) Znt1 = (Zn + ¥n)/2 and yn41 = ((Tay3 + yazd)/2)V/4.
Then My = lim, o z2 and

(iff)
1r=3(1——3i4" [(”‘3’2;‘%’3‘)2 - 1]>_1.

n=0

Septic. Using the u,v form of ®7 leads to
(17)  Let (l) ag :=1, yp :=2"1/8,
(ii) @nt1 := @nUn(1 = VaVn41)(1 — VpVUnt1 + (”nvn+l)2)/(”n - Zn+1)

where ®7(vp,Vp4+1) =0and 0 < v,41 < v,.
Then M := lim,,_, o a, and

(i)

oo -1
1r=3<1—327"[%(H(v,,vn+1)“+(1—vnvn+1)4)—2]> :
0

n=0

The interested reader will be able to produce similar approximations based on
5, 15, 35 and slightly less explicitly on 23 or other integers. In each case the error
is given by (13). For example, the septic algorithm ((17) with an 1 replacing My
and N replacing oo) gives 16, 130, and 932 digits of # when run with N = 3.
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The estimate given in (12) predicts 15, 129, and 931 digits respectively. Using
N =9, (17) will produce 7-7 x 108 digits of . For discussion of the computational
complexity of such iterations the reader is referred to [3 or 6].

4. We now show that, at least, in the quadratic and cubic cases, one can cleanly
remove the M2 in (11). This results in a rederivation of the Gaussian identity for
m. The argument relies on the following Proposition:

PROPOSITION. If My, an, by, are given by (14) then
3 < N
(18) 5T 2M(20] —al) =2VHIME + 0@,

PROOF. Let

2,n+1 2n+1
242 1_+_q2n+1 :

Then in theta function terms [5, 7],
203(q) - 03(q) = S(9),

and, with g:=e™7,

Mot () 8- g0l (7).

Then
. [262 N1 ™ (2n + 1)g?" (2nt)
I R AR I ) 9p SR
m=0n=0
2n+1 —=2™ (2n+1) N
_ oN+1 _ —2
—2 242 Z —2m(2n+1) +0(@@" )
m=0n=
— N+1 _ 1 4 nq i —2oN .
2 ( +2 X_:—I-H_I" +0(g™"")
n=0
But

1+24ZI+ — = 03(q) + 03 (q).

Thus as 03(q) + 05(q) = 36%(q) = 3/(2M3) we have established (18). O
If we combine the information in (14) and in (18) we deduce that for large N

N 2 2
% ~oNFL Z i <a31\+43"> (from (14))

2M2 32 2n< ’51\_42") (from (18)).

Thus
M2

(19) TS 2n(ad — b2)
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which is the Gaussian identity for 7 rediscovered independently by Brent and
Salamin in the 1970s and suggested as a complexity reducing basis for computation
of 7 [6, 10].

One can also establish that
_ 2M¢

1-4%> 13"anant+1(vntnt1)?’

where a, and v, are generated by (15). This can be done from a proposition
analogous to the above, but is more easily seen from remanipulation of the cubic
iteration given in [4].
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